Table A3 Beams

Minimum reinforcement:

Longitudinal steel: high yield -0.25% b_wh mild steel -0.50% b_wh

where $b_{\mathbf{w}}$ is the width of beam and h is the overall depth of beam

Links: mild steel: 0.25% of a horizontal section through the web

high yield steel: 0.12% of horizontal section through web

	A _s required	Weight kg/m	Remarks
Longitudinal steel	At midspan for T- and L-beams (and at supports for upstand beams) $ \frac{M}{0.87f_y (d-0.5h_t)} $ For rectangular beams and		A's is the area (in mm²) of main reinforcement selected at midspan or supports whichever is greater M is the design
	at supports for T- and L-beams (and at midspan for upstand-beams) $\frac{M}{(0.87f_y)(0.75d)}$		ultimate bending moment
Links	Shear stress $ \frac{\text{design ultimate shear force}}{v = \frac{b_{\text{w}}d}{}} $	Single links (i.e. two legs) $0.016 (B_w + H) \frac{A'_{sv}}{S'_v}$	Bw is the width of beam in metres H is the depth of beam in metres
	If $v > 0.6 \text{N/mm}^2$ $\frac{A_{\text{sv}}}{S_{\text{v}}} = \frac{b_{\text{w}}(v - 0.6)}{0.87 f_{\text{y}}}$	Double links (i.e. four legs) $0.016 (1.5 B_w + 2H) A'_{sv}$ $S_{v'}$	in mm ²
	If $v \le 0.6 \text{N/mm}^2$ choose A'_{sv} and S_{v}' to satisfy minimum steel	Treble links (i.e. six legs) $0.016 (2B_w+3H) A'_{sv} \overline{S'_v}$	S' _v is the selected spacing of links in metres

Table A4 Columns

Minimum reinforcement:

Longitudinal steel: 1% of the necessary concrete area Links – make the choice to satisfy the following:

size at least one-quarter of the biggest longitudinal bar spacing: 12 × size of smallest longitudinal bar but not more than 300mm every corner and each alternate longitudinal bar should be restrained by a link in each direction

	Weight kg per m height of column	Remarks
Main steel	0.011 A _s	A_s area of all vertical bars (mm ²)
Links	peripheral links	b and h are dimensions of column cross-section in metres
	$0.016 (b+h) \frac{A}{S_{v}}$	A is the cross-sectional area of one leg of a link in mm ² S_v is the spacing of links in metres
	sausage links	For sausage links (shape code 81) b is the dimension parallel to the link
	$0.016b \frac{A}{S_{v}}$	

Table A5 Walls

Minimum reinforcement:

Vertically 0.4% of cross-sectional area Horizontally 0.2% of cross-sectional area

Weight of reinforcement in kg/m² of wall elevation $0.011 (A_{sv} + A_{sh})$ where A_{sv} and A_{sh} are areas of reinforcement in mm² selected per metre width and height.

Note to Table A5

Consistent units must be used in obtaining areas of reinforcement.